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The Determanation of Parameters in Crystal Structures by means of
Fourier Series.

By W. Lawrence Brace, M.A., F.R.S., Langworthy Professor of Physics,
Manchester University.

(Received February 9, 1929.)

1. Introduction.

The Fourier representation of the results of X-ray analysis was first suggested
by W. H. Bragg* It was developed independently by Duane, and used by
Havighurst and Comptont to give striking representations of the distribution
of scattering matter in crystals. Duane and Havighurst were first in applying
the method to the much more accurate X-ray measurements available in
1925, and in showing how useful it could be.

Duane used a formula derived by Epstein and Ehrenfest.f They showed that
the intensity of an X-ray reflexion from a plane (% & 1) of a crystal is proportional
to the square of the coefficient of a term in the Fourier series, representing the
density p (w, y, 2) of the diffracting material in the crystal ag a function of x, y,
2. The general term may be written

A(h k1) sin (2rhzja — 3;) sin (2rk/b — &) sin (2nlz/c — 3))
Duane reversed the line of thought, and showed that it is possible to deduce
the density in the crystal from the measured intensities of X-ray reflexion.
The X-ray measurements give the values of (A (% £ 1) )2 but not the phase angles
8, O O, This difficulty, Duane showed, could be surmounted in ‘certain
simple cases.

Havighurst§ used this triple Fourier series to determine the density of scatter-
ing matter in such crystals as rock-salt, NaCl. The calculations are lengthy,
and Havighurst confined himself to evaluating the series along certain lines
(cube edges or face-diagonals). Later, he used the same series for the deter-
mination of crystal parameters and analysed by its aid the mercurous halides
which have structures with two parameters.

Compton made the further step of correlating the coefficients A (A % 1) with

* ¢ Phil. Trans.,” A, vol. 215, p. 253 (1915).

t Duane, ‘ Proc. Nat. Acad. Washington,” vol. 11, p. 489 (1925); Havighurst, bid.,
vol. 11, p. 502 (1925) ; Compton, “ X-rays and Electrons,” p. 151.

I “ Proc. Nat. Acad. Sci.,” vol. 10, p. 133 (1924).
§ ‘J. Amer. Chem. Soc.,” vol. 48, p. 2113 (1926).
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the absolute value F (& % ).of the structure factor. F (k k1) is the ratio of the
wave amplitude scattered in a given direction by all atoms in the unit cell,
to that which would be scattered according to the classical formula by a single
electron under the same conditions. Using the values of F, and adding to the
series a suitable constant term, Compton showed that the series represents the
“electron density * at any point in the crystal. He used a simple Fourier
series to express the distribution of scattering matter in sheets parallel to a
given plane ; for this the values of F for the different orders of reflexion by
parallel planes are alone required. He also developed a formula for the radial
distribution of scattering matter in an atom ; for this a knowledge of the
atomic scattering curve (F curve) is necessary.

The first Fourier representations of distribution of scattering matter by
Havighurst and Compton were based on measurements of the quantity F (h k1)
by Bragg, James and Bosanquet.* Compton’s formula for the sheet distri-
bution of scattering matter has been used to check the results of crystal analysis
(beryl, topaz and alum)} and to measure the thermal agitation of atoms.}

It is interesting to note that the formula of Duane is implicitly developed in
a paper by Ewald in 1921 on the reciprocal lattice, referred to more fully below.

It was formulated by A. B. Porter for a corresponding optical problem in 1905,
and W. H. Bragg’s treatment in 1915 is based on Porter’s equations. Porter
based his work on Abbe’s diffraction theory of microscopic vision. The
correlation of the intensities of spectra with coefficients in the terms of a Fourier
series is indeed a well-known optical principle due originally to Abbe fifty years
ago, and used by him to discuss the resolving power of microscopes ; it is now
becoming clear that it has its most far-reaching and perfect expression in the
interpretation of X-ray diffraction. :

9. The Double Fourier Series.

In Havighurst’s calculations, although a triple Fourier series in z, y, 2 is
used, the density is only calculated for a series of points along a chosen line in
the crystal. In Compton’s calculations the density in sheets parallel to a
plane, or the radial density distribution, is measured. In both cases the density
is in effect expressed as a function of one variable (distance along a line, per-
pendicular to a plane, or along an atomic radius), though theoretically the

* ¢ Phil. Mag.,” vol. 41, p. 304 (1921), and vol. 42, p. 1 (1921).

+ Beryl—Bragg and West, ¢ Roy. Soc. Proc.,” vol. 111, p. 691 (1926) ; Topaz—Alston
and West, ¢ Z. Kryst.,” vol. 69, p. 149 (1928) ; Alum-—Cork, ¢ Phil. Mag.,” vol. 4, p. 688

(1927). :
1 James and Firth, ‘ Roy. Soc. Proc.,” A, vol. 117, p. 62 (1927).
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formula may be used for a complete expression of the density throughout
the crystal. The difficulty of dealing with all three variables is one of calcu-
lation, as, in order to get a passably accurate expression for the density, hundreds
of terms must be evaluated and summed for every point z, y, 2.

The present paper describes evaluations of the series which are more extensive
than those previously carried out, in that the density is calculated for values
of two variables. The values of F (A k1) are measured for all crystal reflexions
around a given zone ; for instance, if the zone is the @ axis of the crystal,
the values of I (0 k1) are used. A Fourier series is formed in which these
values appear as coefficients, the variables being the co-ordinates y and z.
Values of y and z are taken at convenient intervals, and the Fourier series is
summed for every pair of co-ordinates. The result is a series of figures in
rows and columns which indicate the distribution of scattering matter in the
unit cell, as projected on the face (100). The direction of projection is parallel
to the @ axis.

The calculations can be made quite rapidly. In the cases described below,
the required range of each co-ordinate is divided into 24 intervals in one direction
and 12 in the other, and the Fourier series of about 40 terms is summed for 288
points.* This is done for the @, b and ¢ axes as zone axes in turn, leading to
projections of the unit cell upon its faces (100), (010) and (001). The pro-
jections (shown ag contoured diagrams in figs. la, 2¢ and 3a) indicate clearly
the spatial distribution of scattering matter throughout the unit cell when
they are considered in combination. They enable the atomic parameters to
be measured, and the number of electrons in each atom to be counted. It is
the object of the present paper to describe this analysis, and to compare ite
results with those obtained by other ways of analysing a crystal. | ‘

In order to form the Fourier series Which'represents the density distribution,
it is necessary to know both the amplitudes and the phase constants of all the
terms. X-ray measurement determines the former, but not the latter, for it
is concerned with intensities which depend on the square of the amplitude
coefficients alone. If, however, the crystal has centres of symmetry, and the

* A comparison shows that the amount of calculation required for projection on a plane
is much less than that required for a complete survey of density throughout the unit cell.
Suppose that F (% & 1) values for the general planes were used, which represented reflexion
up to as high an angle as those taken into account in the present calculations for planes
around each zone. The number of terms in the Fourier series representing the density ab
a point then proves to be between 200 and 300 instead of 40, and the series would have to
be summed for 48 times as many points.
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origin of co-ordinates is taken to be at one of these centres, the equatlons
assume a much more simple form.

It will be assumed that the crystal has a centre of symmetry at the origin,
and that the formula for the projection on the face (100) is required. The axes
of the unit cell are of lengths a, b, ¢, and make angles «, 8, y with each other,
so that be sin « is the total area of the face on which projection is made. Let
¢ (¢, 2) be the density of scattering matter per unit arvea of the projection at the
point y, z. It may then be shown that

o, 2) = (Lfbesing) . 3 3 F(0kI) cos 2 (kyfb + Lj). (1)

—w =

In this formula, there are no phase-constants, but F (0 £ 1) must be given the
correct sign. It is positive or negative, according to whether the scattering
matter in the unit cell diffracts a wave in the same or the opposite phase to
that scattered by an electron at the origin. All positive and negative values
of &k and ! are taken into account (i.e., although ¥ (0 £!) is identical with
F (0%]) the corresponding terms are counted as separate contributions to the
series).

In the special case where £=0, { = 0, the value of F (0 0 0) must be taken to
be Z, the total number of electrons in the unit cell. The corresponding
member of the Fourier series is a constant. When integrating p (y, 2) over the
face (100), all terms vanish, except the term involving F (000). Thus

+0/2 +c/2 .
j [ p(y,2)dydzsina =F(000) = Z. (2)
—p2d —e2 ,
Formula (1) is an extension, to two dimensions, of the formula derived by
Compton for the distribution of scattering matter in sheets, and holds for a
cell of any shape provided that it has a symmetry centre. It may be proved
by forming the expression for ¥ (0 Z 1)

F(Okl):f

+b/2 +ef2
f e (Y, z) dy dz sin « cos 27 (ky /b + Iz]c). (3)

—b/2J —¢/2

When a series XX A (g, 7) cos 2w (qy /b -+ rz/c) is substituted for p (y, z) all terms
vanish on integration except those for which ¢==4% =1 and ¢= —#,
r = — I.. Remembering that F (0 & [)=F (0 % 1), this shows that the coefficient
A (k, 1) of the series is equal to F (0 & 1)/bc sin o.- ‘
It will readily be seen that formula (1) gives the projection of scattering
matter in the unit cell, in a direction parallel to-any zone axis, on any crystal
plane. The zone axis is taken as one axis of reference, and two other axes
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of reference are chosen in the plane. A set of indices (4 & I) becomes a set such
as (0 K L) referred to the new axes, and F (% & 1) must now be labelled F (0 K L).
Formula (1) then applies. '

The formula quoted above is a special case of the general formula for the
density at the point @, ¥, z in a crystal cell of any shape and symmetry. The
reflexion from the plane (% % ) must now be characterised by both an amplitude
and a phase constant. Following Ewald (loc. cit.) F (h & I) may be expressed
as a complex quantity

F(hkl)=|F (hkl)|et®rD,

r+al2 r+b/2 otef2 . y
— CT‘b%} / j / j / ) (il;, 9 z) 62nz(hm/a+ky/b+lz/c) dw dy dz. (4_)
—af2 J =bj2 J—cf2

V is the volume of the unit cell, and a, b, ¢ are the lengths of its edges.
If we assume a series for (z, ¥, 2) of the form
+0 4o J»
p@y,2)= X X X A(pgr)cos (2r(pxja + qy/b + rzfc) + « (pgr) ),

—® —w —ow

a formal solution is given by
A(kkl):lF(kkl)i.%.
a(hkl)=—06(hEkl).

The series for (z, y, #) is thus

4o 4o Fowo . .
e(x,y,2) =—1‘7 X X X |F(hkl)|cos 2r (hz/a-t+ky|b+1z]c)—6 (R ET)). (B)
As before, F' (0 0 0) is equal to Z, the total number of electrons in the unit cell.
In this general case |F(hkl)|=|F(REkl)| and 0(hkl)=— 0(kkl). Al
terms except the constant term in the series occur in identical pairs, but it is
convenient to keep the series in this form for the sake of symmetry of expression.

3. Application of the Double Fourier Series.

The Fourier series is applied in this paper to a crystal which has already been
analysed by other methods.* The crystal is diopside, CaMg (SiO,),, the
structure of which depends on 14 parameters. Extensive measurements of
F(0k1), F(hO1l), F(hkO0) are available and are quoted in the paper referred to
above. All 14 parameters had been determined by Warren and Bragg, and
it is therefore of interest to see how closely the former values agree with the

* Warren and Bragg, ¢ Z. Krist.,” vol. 69, p. 167 (1928).
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parameters deduced from the projections of density on the cell faces. The
average difference, in this quite complex crystal, proves to be only 0-5 per
cent. Other interesting points arise from a consideration of the projections,
which are dealt with below.

The main point which it is desired to emphasise, is one discussed by West
and the author* in a recent paper on the analysis of complex crystals. If
absolute measurements of X-ray diffraction are available, the analysis of
complex crystals is far more simple and certain than it is when merely compara-
tive or qualitative estimates of diffraction are made. The paper on the structure
of diopside was intended to be an illustration of the use of these measurements.
The 14 parameters of the crystal can be deduced by using the absolute measure-
ments without making any assumptions as to the probable arrangement of the
atoms. In the present paper, the values of the parameters are derived in a
quite different way, and the agreement in the results shows that the crystal
has been analysed correctly.

The two methods of analysis are not independent, for the former analysis
was used to give the correct sign to each coefficient F (A £ 1). If the sign could
be determined otherwise, the complete analysis could be made by the Fourier
series. This point is briefly discussed in section 9 of the paper by Bragg and
West. Inthe previous analysis of diopside, atomic scattering curves (F curves)
for the atoms were used, and values of the parameters were found which made
the observed and calculated values of F (% k1) agree, signs being of course
disregarded. For convenience, we may denote by |F (& % I)| the quantity we
can deduce from X-ray measurements of intensity, and by F (k) the
coefficient of the Fourier series. When the analysis of the structure was com-
pleted it was possible to give the right sign to each coefficient, ¢.e., to determine
F(hkl). In the present analysis, therefore, the magnitudes of the Fourier
coefficients depend only on X-ray measurement, but their signs are found by
a previous analysis. It will be realised, however, that there is in general very
little doubt about the sign of each coefficient, once an approximate analysis
of the crystal has been made. It is determined in most cases by the positions
of the heavier atoms of calcium, magnesium, and silicon, and quite approximate
estimates of their parameters will suffice. The sign is only doubtful when F
is very small, and in that case it does not matter.

As was emphasised by Duane, any given set of X-ray results may be explained
even in the case of a centrosymmetrical crystal by as many different arrange-
ments of scattering matter as there are permutations of signs in the Fourier

* Bragg and West, * Z. Krist.,” vol. 69, p. 118 (1928).


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on October 13, 2015

Parameters in Crystal Structures. 543

coefficients. The test for the correct solution is that it is reasonable, or that it
indicates a distribution of scattering matter which outlines atoms such as we
know to exist in the crystal. In the former analysis, the existence of four
molecules of CaMg (Si0,), in the unit cell was assumed from the start, and these
atoms were moved about until the experimental results were explained. In
the present analysis we show in effect that a certain set of signs given to the
measured values of | F (4 k1) | leads to a distribution of density which (a) gives
consistent projections on all three cell faces; (b) gives the correct number of
atoms in the unit cell ; (c) gives the correct number of electrons to each atom.
The evidence for the correctness of the solution is set forth, using the Fourier
series, in a new form which is perhaps more attractive and easy to grasp.

It must be realised, however, that the analysis by assigning parameters to
atoms which make observed and calculated results agree, and the analysis by
finding a suitable set of signs for Fourier terms, fundamentally depend upon
precisely the same criteria for their success. We assume as one criterion, for
instance, that the calcium atom contains about 18 electrons with a spatial
distribution which we have been able to estimate. In the first type of analysis
this yields an F curve for the scattering by calcium, and such F curves are used
in comparing calculated and observed results. In an analysis entirely con-
ducted by the Fourier method, signs would be adjusted till the series outlined
a recognisable calcium atom, again with the number of electrons and spatial
distribution which we expect. Every step in the one type of analysis may be
paralleled by a similar step in the other.

4. Tabulation of Experimental Resulis for Diopside.

The crystal diopside is monoclinic, witha = 9:71 A,6 =889 &, ¢ =5-24 A,
B = 74°10". The unit cell contains four molecules of CaMg (Si05),, hence the
total number Z of electrons in the unit cell is 432. The space group is Cs;°
(2Cs — 6). : :

The projections dealt with in this paper are upon the three faces (100),
(010) and (001) of the unit cell. Sets of values of F(0£1), F(A01), F (2 %O0)
are required which are as extensive as possible. These values, taken from the
paper on diopside, may be put in the form of tables such as those below.

In Table I, for example, I varies along the rows and % along the columns.
Owing to the conditions imposed by the space group, only even values of &
appear, and also F' (0 0 /) is zero when lis odd. The complete table would show
negative values of % as well as of [. This is unnecessary because F (0 k1) =
F(07%7); we may say that every table has a centre of symmetry at the value
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432 corresponding to F(000). Negative values of F' are denoted by a bar
above the figure. As mentioned above, the magnitudes of F are in every case
determined by experimental measurement. The sign of each coefficient is
determined by a previous analysis of the crystal, which need only be assumed
to be approximately correct.

Table I.—Values of F (0 £1).
When% =0, liseven. Fkisalwayseven. Whenlisodd, F(0kl)=—F (0% ).

Index - _ o
§ 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8

Indexk O 38 — 20 — 136 — 175 —432 — 75 — 136 — 29 — 38
¢2 0 0 0 0 O O 75 4 19 44 75 0 0 0 0 0 0
4 26 33 % 0 50 72 8% 0 82 72 35 0 26 33 26
6 0 29 0 4% 88 50 94 50 88 44 0 29 0
8 0 0 0 28 2 0 2 28 0 0 0O
10 . 66
12 29
Table IT.—Values of F (201).
For all reflexions, 4 and [ are even.
Index I— _ _
i 3 0 2 4 6 8
Index 2 0 38 29 136 175 432 176 136 9 38
\ 2 0 0 19 88 0 46 0 36 0
4 0 72 90 128 15 80 77 1o 0
6 0 0 0 100 82 59 30
8 33 Bl 76 5 0 ’
10 63 56 a4
12 0
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Table II1.—Values of F (% £ 0).
For all reflexions, & + kis even. F(h%0)=F (h%O0).

Index h—
0 1 2 3 4 5 6 7 8

Index & O 432 0 15 100 76

1 0 76 63 41

2 19 51 I3 D) 32

3 13 50 37 0

4 0 16 50 0

5 81 58 0 08

6 04 31 29 0

7 0 0 40

8 0 i

In order to get a perfect representation of the scattering power in the crystal,
it would be necessary to measure all values of F' up to indices so high that the
values become vanishingly small. It will be clear from the tables that the
experimental results fall far short of the ideal. All values of F have been
measured up to a glancing angle represented by sin 6 =0 -45 for planes
(0%17) and (A 01), and sin 0 = 0-30 for the planes (% % 0), using rhodium Ko
radiation for which A = 0-615 A. Hence the Fourier representation will be
in all cases imperfect, and particularly so for the projection on the ¢ face where
values of F (A £ 0) are used.

5. Ewald’s Recvprocal Lattice.

The figures in these tables may be given an interesting interpretation by the
elegant method of the “Reciprocal Lattice*”” which we owe to Ewald.t Every
set of parallel planes of a crystal is represented by a point in the reciprocal
lattice. The line joining this point to the origin of the reciprocal lattice is at
right angles to the crystal planes, and its distance from the origin is inversely
proportional to their spacing. Since there is a definite structure-factor for
‘ weight ” can be attached to

<

each set of planes, a corresponding figure or
the point of the reciprocal lattice. The structure factors for first, second and

* It will be realised that each point in the reciprocal lattice corresponds to a simple
sinusoidal distribution of density in the crystal, and that the complete representation of

a given set of parallel crystal planes is an extended row of points.
T ¢ Z. Krist.,” vol. 56, p. 129 (1921).
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high orders of X-ray reflexion become a set of figures attached to points in a
row at equal intervals, the first order being nearest the origin. The assemblage
of points corresponding to reflexion by all planes of the crystal builds up a space
lattice, the reciprocal lattice.

We may consider the “ weights * attached to the points of reciprocal lattice
as being, in our notation, the values F (A %1I). Ingeneral F (k% 1)is a complex
quantity, according to Ewald, representing both the amplitude and phase of
the scattered wave. In the particular case considered here, it is real but
positive or negative. The indices A, k, I give the co-ordinates of the point
with reference to the axes of the reciprocal lattice. We attach a weight ' (0 0 0)
to the origin equal to Z, the number of electrons in the unit cell of the crystal.

If this convention be adopted, it will be seen that the figures in Tables I,
II and III represent plane sections, through the origin, of Ewald’s reciprocal
lattice. The origin of the lattice is always at the figure 432. The Fourier
representation may therefore be summed up as follows. Any plane of the
reciprocal lattice passing through the origin has a two-dimensional array of
figures. These are the coefficients of a Fourier series, which gives the pro-
jection of the scattering matter in the crystalline cell on a plane. The direction
of projection is that of the zone axis corresponding to the plane section of the
reciprocal lattice. The orientation of the crystal plane on which projection
takes place is obviously immaterial. Any convenient plane inclined to the
zone axis, and any axes of reference in that plane, can be chosen. The indices
(h k1) must, of course, be transformed into indices (»' k' 1) to correspond to
the new axes which have been chosen. This merely means that having chosen
our axes of reference in the crystal plane, we must choose a corresponding
frame of reference for the network of points in the central section of the
reciprocal lattice.

It is interesting to note that the whole development of the Fourier repre-
sentation is ifnplicitly contained in the paper by Ewald referred to above.
He develops it, however, only in respect to a set of scattering points in the
crystal, and not to a continuous distribution of scattering matter.

6. Summation of the Fourier Series.

The Fourier series for projections on (100), (010) and (001) faces of the
unit cell are summed in Tables IV, V and VI. The figures in these tables
correspond to series

S(y, 2) =X X F(0k) cos 2r (ky/b + lz/c)
S(x, 2) =X Z F(h01) cos 2r (hz]a + Iz]/c)
S (@, y) = Z X F (A kO0) cos 2r (hzja + ky/b).


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on October 13, 2015

Parameters wn Crystal Structures. 547

To make the tables more compact, the actual sums of the series are divided by
10. The density per unit area at any point in a projection is given by
S(y, 2)/besine,  S(z, 2)/ac sin B, S(z, y)/ab sin y.

(Since the crystal in the present example is monoclinic, sin oo = siny = 1.)
Thus in order to derive the density per unit area from the figures in the tables,
they must be multiplied by 10 and divided by the area of the face on which
projection is being made.

The origin is taken to be at the centre of the unit cell. This origin is marked
in each table, and the range of the figures in the a, b or ¢ direction is indicated.
It is not necessary to calculate the density all over the cell face as it repeats
by symmetry. Since an atom in the general position becomes eight atoms in
the unit cell, owing to the symmetry elements, it follows that itis only necessary
to plot the density distribution over one-eighth of the surface of each face.
The continuation of these sets of figures over the whole of each face will be
clear if they are considered in conjunction with the contoured diagrams of
figs. 14, 24, 3A.

Table IV.—Projection on Face (100).
S(y, 2) X 1071,

163 | 122 | 58| 29 2 3 3 [ 2| 29] 58122 | 163

120 | 83| 40| 24 6 i) 33 i 6] 24| 40| 83| 129

65| 30| 17| 25| 80| 42| 76| 42| 30| 25| 17| 80| 65

28 9| 24| 52| 75134 | 191 |184| 75| 52| 24 9| 28

22| 22| 48| 83| 112|214 | 285 | 214 | 112 | 83| 48| 22| 22

17| 29| 51| 69| 91212289 |212| 91| 69| 51| 29| 17

2| 13| 21| 24| 383|143 (210|143 | 33| 24| 21 13 2

0 4 0 5| 6| 67| 111 | 67 6 5 0 4 0

12| 11 0 1 6| 29| 49| 29 6 1 0| 11| 12

24| 16 4| 22| 35| 25| 25| 25| 35| 22 4| 16| 24

29 | 16 3| 37| 68| 44| 36| 44| 68 37 3| 16| 29

. 31| 13 0| 42| 78| 76| 79| 76| 78| 42 0| 13| 31
n 33 8 6| 81| 70({112|137|112| 70| 31 6 8| 33
31 5 8| 20| 54| 142|193 | 142 | 54| 20 8 5| 31

29 4 B| 15| 40| 156 | 224 | 156 | 40| 15 5 4] 29

24 4 21 12| 271389213 | 189 | 27| 12 2 4| 24

12 il 2 71 12| 93|159 | 93| 12 7 2 1| 12

1| 12 2 1 21 45| 97| 45 2 i 3| 12 1

2| 5 71 12| 15| 87| 74| 37| 15| 12 7 5 2

17 13| 21| 33| 45| 66| 95| 66| 45| 33| 21| 18| 17

22| 18| 16| 31| 50| 86| 111 | 86| 50| 31| 16| 18| 22

28| 21| 2| 6| 23| 68| 91| 68| 23| 6| 32| 21| 28

65 | 50 3 5 1| 34| 52| 34 1 B 3| 50| 65

120 | 99| 38| 12 6| 10| 19| 10 6| 12| 38| 99| 129
(163)] 122 | 58 | 29 2 8 3 8 2| 29| 581|122 | 163

Origin<— 92 *
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The positions of the atoms are revealed by the figures. A heavy atom makes
the figures rise to an obvious maximum. A light atom (oxygen) is sometimes
so close to a heavier neighbour in a projection that its position is not shown
by a separate maximum value.

Some of the figures are negative, indicated by a bar above them. In a case
of X-ray diffraction such as this, where anomalous scattering does not occur,
negative scattering matter has no significance. The density should be positive
everywhere, approaching a zero value in the regions between the atoms. The
appearance of negative values may be partly due to errors in measurements of
F, but even if these were perfect, negative values are to be expected because
the Fourier series is not complete. Additional values of F for higher indices
would make the figures correspond more closely to the ideal values.

The diagrams in figs. 14, 24 and 3A were made by plotting the figures giving
the density distribution in their positions on each face of the unit cell, and then
-drawing contour lines through points of equal density. The contours are drawn
at intervals of 40, corresponding to intervals of 400 in the actual values of
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S(y, 2), etc. The positions of the atoms as found in the previous paper on
diopside are shown in figs. 1B, 2B, 3B, and the two sets of figures are seen to
correspond very closely. In the projection on (010) the areas enclosing
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negative values are marked by dotted lines, these lines being the contours of
zero level where S(z, z)-= 0. The zero contours are not marked in the other
projections. The first continuous contour line around each atom or group
passes through all points where S is 400, the next through points where it is
800, and so forth.

7. The Number of Electrons vn the Atoms, and their Identification.

The density in the space between the atoms is in general quite small. Since
this is the case, it is possible to draw an approximate boundary around each
atom or group of atoms in a projection and to calculate the total number of
electrons in that area. We may take, as an instance, the projection on (010),
and count the number of electrons in the most obvious rounded mass shown in
that projection, where the contour lines rise to a peak of 364 (3640). The
figures S are plotted at intervals a/24, ¢/24. The density per unit area is
equal to ‘

S (z, 2)/ac sin B

and this density may be taken to be the average density over a cell with sides
a/24, ¢/24. This little cell of area acsin B/24% contributes an amount

(S (z, z))ac sin B) . (ac sin B/24%) = S(z, 2)/2304.
Thus the total number of electrons in the whole mass of scattering matter is

given by
Z S (x, 2)/2304,

where 2 S (2, 2) is 10 times the sum of all the numbers in Table V which outline
the atom or group in question. Although the boundary enclosing these
numbers is somewhat indefinite, trial shows that it does not matter much
where it is drawn because the density between the atoms is so small. In the
case considered, the number of electrons proves to be 28-3, corresponding to a
superimposed calcium atom and magnesium atom (18 + 10). The remaining
atoms in the projection (010) are so superimposed that it is difficult to dis-
entangle them, but all atoms stand out clearly in one projection or another.
The following table shows the electron-count in all cases where it is possible.
There are three kinds of oxygen atom, O,, O, and O,.
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Projection on (100).

Atoms. No. of electrons.
Ca 420, ...... 353
Si+0, - ... 20-1
Mg L 13-3
0, e 8:0

Projection on (010).

Atoms. No. of electrons.
Ca+ Mg  ...... 28-3
0o, ... 7-7 approx.

Projection on (001).

Atoms. , No. of electrons.
Ca L 16-6
Mg ...l 12-6
Si4+ 0,  ...... 19-8
0, ... 9:6
o, ... 8-0

Two points of interest may be noted. The average number of electrons in
the oxygen atoms is distinctly less than 10, being in fact 8-3. It is thus much
nearer to the value 8 for a non-ionised atom than to the value 10 for O~2. The
average number for Si- O is equal to 20, so that according to these figures
‘the number of electrons in the silicon atom is 11-7, and in the oxygen atom is
8-3. The estimate of 9-6 electrons for O, in the (001) projection is at variance
with these estimates, and the discrepancy shows that too much reliance must
not be placed upon them. Nevertheless it is interesting to see that the figures
do not correspond to ions Sit, O~2 each with 10 electrons. They suggest, on
the other hand, that both the oxygen atoms and the silicon atoms are only
partially ionised. As against this, if the estimates given above for the numbers
of electrons in all the atoms of the projection on (001) are added, the sum for
the molecule CaMg (SiO,), is 104 which does not check with the correct number
108. Some electrons have been missed in the count, and the missing electrons
may belong to the diffuse oxygen atoms. It is indeed difficult to make esti-
mates for the oxygen atoms, since their boundaries are not precise and the
incomplete Fourier series leads to irregular variations of the density between
the atoms. For instance, it is possible to see in the figures of Table VI at the
point @/2, 0, a small mass of scattering matter which cannot be associated with
any atom, and is a kind of optical *“ ghost.”
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The other point of interest is the division of electrons between calcium and
magnesium. The total number is found to be 28, corresponding to the figures
18 4 10 which we would expect. The magnesium atom, however, appears
to have more than its due share of these electrons. The material is reported
to contain 1-12 per cent. of FeO, and if this iron replaces magnesium it would
raise the average number of electrons in the Mg position from 10 to 10-5.
The number of magnesium in the projections is, however, between 12 and 13
whereas calcium appears to have about 16 electrons instead of 18. The
possibility that calcium and magnesium interchange their positions to a certain
extentissuggested. In view of the complexity of the crystal, and the difficulty
of allowing for extinction in correcting some of the observed intensities, it
would be misleading to stress any of these figures unduly.

It is quite clear that the atoms can be successfully identified by counting
the electrons in them.

8. The Parameters of the Structure.

“The position of an atom as shown in a projection may either be taken to be
the point where the density shows a maximum, or to be the centre of gravity
of the whole mass of scattering matter. For the oxygen atoms the latter
has been determined, but this can only be done when the atom stands out
clearly separated from its neighbours. Insome cases overlappingis so extensive
that no precise co-ordinates can be found. An interesting special case is
shown in the projection on (100) fig. la. Two oxygen atoms overlap at the
centre of the figure, forming a single rounded mass. These oxygen atoms are
derived from each other by inversion at the centre. It is clear that their
co-ordinates in both b and ¢ directions are very nearly equal to zero, but it is
impossible to find their precise values. The information derived from the
various projections is tabulated below.

Table VII.
(100). (010). (001).
Projection.
8, 8, 0. 6, 0,. 0,. 0. | 0, 0.
— =107 90 0 —_ 90 0 |—108 —_—
e 30 90 0 - 90 0 34 —
— | 146 | (90) 78 — 85 4 | 147 | —
| (148) | (50) 137 — 55 135 | 151 | —
— | (100) | (115) 43 —— 125 51 91 —
— | (180) (0) 52 — 0 52 | (180) | —
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The figures in brackets are approximate because of overlapping of atoms.
The values for 0, and O, in the (010) projection are bracketed because the
position of the centre of gravity of the pair can be placed at the co-ordinates
given in the table although these two atoms cannot be resolved.

The parameters deduced from all three projections are combined below, and
are compared with the parameters deduced by the analysis in a previous
paper.

Table VIII.
Parameters determined by Values given in previous
Fourier analysis. paper on diopside.

0,. 0,. ;. 0. 0,. 0;.
o o o o o s
0 —107-5 90 . - 0 —110 90
0 32 90 0 30 90

76 146-5 85 : 76 148 85

135 151 (50) 136 145 50

51 91 (115) - 51 90 115

52 (180) 0 56 173 0

Even when the results of the three projections are combined, certain co-
ordinates of the oxygen atoms remain doubtful. They might be obtained by
taking, for instance, the calcium atom as outlined in the (001) projection and
subtracting it from the group Ca -- 20 in the (100) projection, so as to leave
the oxygen atoms clearly defined, but the figures are perhaps not sufficiently
accurate to make such a process sure. It seems better to give in the table
definite values only in those cases where they can be read directly from the
projections.

The parameters are given in degrees, in accordance with the notation in
the previous paper. The average difference between the two sets of values,
for all figures except those in brackets, is 1-6°.  If the parameters are expressed
as fractions u, v, w of the axial lengths a, b, ¢, this corresponds to an average
difference of 0-005 in these fractions. For a crystal with 14 parameters this
is a small difference, and the agreement is evidence of the effectiveness of
quantitative measurements in analysing complex structures.
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Table IX.
Parameters determined by Values given in previous
Fourier analysis. paper on diopside.
., . w. U. CA w.
CB e 0 —0-209 | 0-25 0 —0-306 | 0-25
(] 0-089 0-25 0 ©0-083 0-25
0-211 0-407 0-236 0-211 0-411 0-236
0-375 0-419 (0-14) 0-378 0-402 0-139
0-142 | 0-253 (0-32) 0-142 0-250 0-320
0-145 (0-50) 0-00 0-155 0-480 0-00

9. Analysis by Fourier Series.

The diopside crystal was first analysed by making calculated and observed
values of |F (A k1l)| agree. This determined the sign of F (% k1) and it was
possible to form the Fourier representation of the distribution of scattering
matter. It is interesting to see whether any of the labour of finding suitable
parameters could have been shortened- by employing the Fourier analysis at
an earlier stage.

This appears to be the case. Consider the projection on (010) where calcium
and magnesium atoms are superimposed, fig. 2a. In Table II it will be seen
that F (A 01) is positive when -1 is 0, 4, 8 and negative when 417 is 2, 6.
This means that the sign of F (4 07) is determined by the position of the calcium
and magnesium atoms, so that all terms in the Fourier series

22 F(h01)cos 2r (hrja + iz]c)
are positive at the point = 0, z = ¢/4, where these atoms are situated. The
sole exception is F (202). It so happens that for this spectrum alone oxygen
and silicon contributions to F (202) more than neutralise those of calcium and
magnesium.

If therefore some hint had been obtained at an early stage of the analysis
that the calcium and magnesium atoms were superimposed in this projection,
and that they determined the sign of ¥ (4 0 1), it would then have been possible
to use the Fourier series to find the projection on (001) and so the x and z
co-ordinates of all the atoms. This would have been done without the labour
of trying different values for the parameters, and seeing which gave the best
agreement between calculated and observed values of F (4 0{).

There is no such simple rule for the signs of F (0 £7) and I (2 £ 0), and it is
necessary to analyse the crystal in order to determine these signs. . However
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a study of the contribution of the various atoms to these F values shows that,
in every case except F (022), the sign is determined by the calcium, magnesium,
and silicon atoms. Therefore a knowledge of the positions of these heavy atoms
would make it possible to form the Fourier series, and so to fix the oxygen
atoms. This would be of great advantage in analysis, because the deter-
mination of the oxygen parameters s a troublesome matter owing to their
small scattering power. _

To sum up, a preliminary analysis of the crystal which gives approximate
positions of the heavy atoms, suffices to fix the signs of the coefficients F. The
Fourier series may thus be formed, and the positions of all the atoms accurately
read off on the projections.

It is interesting to re-interpret the ordinary process of analysis by the
conceptions of the Fourier series. In particular, a study of the effect of extinc-
tion is very illuminating. Extinction affects the most powerful reflexions, and
allowance for it is an uncertain matter. When comparing calculated and
observed values of F, the discrepancies for the powerful reflexions are: very
obvious, and might seem to cast doubt on the success of the analysis. In our
analyses of complex crystals by quantitative measurements we have always
held, however, that this doubt is not justified, and that the agreement for a
large number of reflexions of high order is ample evidence for the correctness
-of the solution. When now the Fourier series is formed, it is clear that the
effect of allowance for extinction on the calculated distribution of scattering
matter is very small. For instance, in the (010) projection of diopside, the
position of the superimposed calcium and magnesium atoms is shown by a
peak rising to 3640. The strongest reflexion is (002) and F (002) is taken to
have a value of 175. It may be in error by 30 units owing to incorrect allowance
for extinction, but clearly this will hardly affect the peak of 3640. The density
is determined by a large number of F values not affected by extinction, and
the few reflexions at low angles which are so affected are relatively unimportant.

If the form of the Fourier series

22X F(0F1) cos 2n (hxja -+ lz]c)

be considered, it will be seen that each term represents a series of periodic
undulations of density, parallel to a line whose slope is determined by the
indices %, I. The higher the indices % and I, the shorter is the wave-length.
We may thus distinguish the effect on the projection of the different terms.
Those with low indices group the density into certain masses which begin to
-outline the atoms. The terms with high indices trim the outlines, and give
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precision to the atoms. The number of electrons in each atom is determined
by the terms with low indices. Since these are affected by allowance for
extinction, the numbers of electrons counted in section 7 must be accepted with
reserve. On the other hand, the precise positions of the atoms are almost
entirely determined by the terms with high indices. Hence the values of the
parameters may be relied on to be correct.

This is merely another way of regarding the familiar consideration that.
reflexions with low indices must be measured accurately if we are to tell whether
the atoms are ionised or not, and that reflexions with high indices serve to fix
the positions of the atoms with precision.

Summary.

The representation of the scattering matter in a crystal by Fourier series,
first used by W. H. Bragg and later developed by Duane, Havighurst and
Compton, is applied here to the determination of the parameters in a complex
crystal. 4 ,

A series is used which gives the projection of the scattering matter in the
unit cell on each of its faces in turn. For instance, when projection is made on
the face (100) of the cell, the formula for the density g (%, 2) of the scattering
matter at a point y, 2 is as follows :—

e (y, 2) = (1/bc sin ) sz -Eo F(0%1) cos 2m (ky/b 4+ Iz]c).

In this formula, F (0 £ 1) is the value of the structure factor for the reflexion
(0 % 1) measured in absolute units. The formula applies to a cell of any shape,
provided that it has a centre of symmetry. F (00 0) is taken to be the number-
of electrons in the unit cell.

This series is evaluated for the crystal diopside CaMg (SiO,),. The signs of
the coefficients I' (0 £ 7) had been fixed by a previous analysis of the crystal..
The projections are shown as contoured diagrams in figs. 1a, 24 and 3a. The
positions of the atoms agree very closely with those given by the previous.
analysis, figs. 1B, 2B and 3B, made by finding values for the parameters which
gave agreement between calculated and observed values of F. A comparison
of the two sets of 14 parameters is shown in Table IX.

It is possible to count the numbers of atomic electrons in the projections.
They are approximately as follows :—Ca 16-5, Mg 12-5, Si 11-5, O 8-5-9.
It is interesting to note that the oxygen does not appear to be an ion O™%
with 10 electrons.
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The groups of F values used for any projection may be conveniently described
as the weights attached to a network of points on a central section of Ewald’s
reciprocal lattice. ‘

The employment of Fourier series in analysing complex crystals is discussed,
and it is concluded that it may be used in conjunction with an analysis of the
usual type made by assigning parameters to the atoms, and may considerably
shorten the labour of analysis. The series is particularly of value in dis-
covering the positions of the lighter atoms and in leading directly to precise
values of the parameters.

In a recent paper by Mr. West and the author in the ‘ Zeitschrift fiir Krystal-
lographie,” entitled ‘A Technique for the X-ray Examination of Crystal
Structures with many Parameters,” examples were given to show that the use
of absolute measurements of X-ray diffraction enabled these complex crystal
structures to be solved with directness and accuracy. The use of the same
measurements in the method of Fourier series affords further evidence in
support of the effectiveness of such absolute measurements.

It is with great pleasure that I acknowledge my indebtedness to my father,
Sir William Bragg, for suggestions which materially contributed to the work
described in this paper. At the time when I was following up the connection
between our usual methods of analysis and the analysis by Fourier series, a
connection briefly treated in the paper by Mr. West and myself, my father
showed me some results which he had obtained by using relative values of the
first few terms of two- and three-dimensional Fourier series to indicate the
general distribution of scattering matter in certain organic compounds. It
was largely as a result of his suggestions that I was encouraged to make all
the computations for these two-dimensional series, using the extensive absolute
measurements which we had made on certain crystals.
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