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F16. 3. Radial density distribution in rhombic sulphur, giving the number of atoms per A at any
distance from a given atom.

to suggest a structure of long chains, the ring
solution is the more probable. This result is in
good agreement with the chemist’s picture of a
closed ring Ss molecule in rhombic sulphur.

The results obtained here for sulphur serve as a
good illustration of the use of the Fourier
integral method of analysis. Without knowing or
determining the crystal structure of the material,

one obtains by a perfectly straightforward
mechanical operation the relation of each atom
to its neighbors. The value of such information
for its own interest, or for its usefulness in a
complete structure determination is evident."

11 Based upon this verification of.the ring molecule thte
structure of rhombic sulphur has since been worked out.
The results will be reported elsewhere.

A Fourier Series Method for the Determination of the Components of Interatomic
Distances in Crystals*
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A method for the direct determination of the components of interatomic distances in crystals
has been developed from a consideration of the properties of the Fourier series whose coefficients
are the squares of the F-coefficients for the crystal reflections. Valuable structural information

is thus obt

ained without making any assumptions as to the phase to be allotted to the I

coefficients. The practical application of the method is illustrated by a discussion of the struc-
tures of potassium dihydrogen phosphate and hexachlorobenzene.

1. INTRODUCTION

IN any crystal, the density of scattering power
for x-rays (electron density) can be repre-
sented by a three-dimensional Fourier series of

* Presented in

r part at the Washington Meeti
American Physica £45, 103A (oo

1 Society, Phys, Rev. 45, T63A (1934).

the form?!

pxyz)= Zfz a(hkl)eh'i(h:/a+kylb+ltlc). 1)

hkl=—co

i i Bragg,
1 For literature references and notation see W. L. .
Proc. Roy. Soc. Al23, 537 (1929); also A. L. Patterso!
Zeits. f. Krist. 76, 177 (1930).
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If this density is real, as is usually the case, we
have, in addition,

a(h, B, ))=a*(—h, —k, =), (1a)

where o* is the conjugate complex of a. Itis a
wel-known result that the values of F(ikl)
obtained from absolute measurements of inte-
grated intensity of x-ray reflection are connected
with the coefficients «(kkl) of the series (1) by the
relation

F(hel)= | a(hkL)|. @)

The problem of x-ray crystal analysis is the
determination of the appropriate phases for the
quantities a(kkl). This involves the use of our
knowledge of the atomic scattering powers of the
atoms of which the crystal is composed. These
atoms are allotted positions in the unit cell in
accordance with the space group requirements.
Each of these positions, except in very special
cases, involves one or more parameters in its
specification. In general, a crystal structure
investigation will involve the determination of a
large number of such parameters and their
calculation in most cases can only be carried out
by a process of trial and error.

In this paper a method is presented which
enables the principal interatomic distances to be
directly determined. The directions in which
these distances lie can also be obtained. No
assumptions are involved in the deduction of
these results and they are independent of the
space group determination.

; These interatomic distances place very definite
limits on the values which the unknown param-
eters can assume. The labor involved in their
determination is thus very considerably reduced.

2. ONE-DIMENSIONAL PROBLEM

It is simpler to discuss the one-dimensional
problem first. Consider the distribution of
electron density normal to a crystallographic
plane whose spacing is d. This density can be
expressed in the form

p(*) =3 a(n)errinzla; a(m)=a*(—n). @)
Let the curve of Fig. 1 represent any such

d“‘.’ib“tion function. Consider an element dx at
 distance x from the origin. The distribution
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around this element can be expressed as a
function of a parameter ¢ in the form p(x+1).
Suppose we weight this distribution by the
quantity p(x)dzx, the amount of scattering matter
in the element dx, and compute the weighted
average distribution about any element dx when
x is allowed to assume all values within the
period. This average distribution 4 (¢) is given by
d

A@=a [ o@otstodn. @

This integral is well known in the modern theory
of the Fourier series as the “Faltung” of p(x) and
can immediately be evaluated by substituting (3)
in (4),i.e.,

A()= | aln)|remine, ®)

This series can obviously be computed directly
from the measured intensities of reflection from
the various orders of the plane and it will be of
great value to crystal analysis if we can obtain
a simple physical interpretation of its meaning.
This is readily done for the integral form, as
follows.

We see that the principal contributions to 4 (¢)
will be made when both p(x) and p(x+¢t) have
large values. Thus if there is a peak in the curve
A(#) for a value (=1, it means simply that there
are two peaks in the curve p(x) at a distance #;
apart. This simple qualitative result has a direct
interpretation in crystal analysis. If we find a
peak in the curve A(t) for a given plane at a
distance # from the origin, we know that some-
where in the distribution normal to the plane
there are planes of atoms at a distance ¢, apart.?

2 The result obtained here is an extension of the applica-
tion to crystals of the theory of scattering of x-rays in
liquids reported by Gingrich and Warren at the Washington

meeting of the American Physical Society and arose in a
discussion of that work. Phys. Rev. 46, 368 (1934).
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While this qualitative result is very simple, its
exact mathematical expression is extremely
difficult. The distances between peaks are not
reproduced exactly except in the simplest cases
and that makes a strict mathematical interpreta-
tion almost impossible. However, a trial with a
few simple series will convince the reader that the
accuracy is sufficiently good to give very useful
approximations for these distances. This is also
shown by the examples given below.

3. THREE-DIMENSIONAL SERIES

The result of the preceding paragraph can be
extended immediately to three dimensions. We
evaluate the integral

A (uvw)= (abc)“. /’; I.bf;;(xyz)

X p(x+u, y+v, z+w)dxdydz
= ZZZ I a(hkz) ‘?EZWx(hu/zH»kaH»lw/c)

=333 F¥(hkl)erriChiulutkubttu/e) (6)

By a direct extension of the above argument, we
can show that if we find a maximum of 4 (uvw) at
some point (uv,w;), then there are two maxima
(atoms) in the distribution p(xyz) whose distance
apart is given by the vector whose components
are (uv,w;).

4. TWo-DIMENSIONAL SERIES

In the practical application of this method to
the analysis of crystals, the two-dimensional
series promises to be the most fruitful. It is much
easier to compute and much easier to represent
than the three-dimensional series; and it is much
less confused and more easily interpreted than
the one-dimensional series,
distribution of the type

We consider a

(7)

and discuss the components of the interatomic
distances which lie in the plane under con-
sideration.

A (,w) = Zmz F"'(/lk())e”‘“‘ ufatkv/b)
hk=—co

5. EXAMPLES oF THE METHOD

The practical application of the method is best
discussed in the light of known structures. Two

PATTERSON

such examples have been chosen,
dihydrogen phosphate, which has been very
thoroughly investigated by West® provides a
example of a simple inorganic substance with
several atoms in fixed positions and one set of
atoms in a general position involving three
parameters. A complete set of absolute measyre.
ments of intensity is available for the two
principal zones of the crystal. The second ey
ample is hexachlorobenzene,* a relatively simple
organic structure whose atoms are all in general
positions. For this crystal, Lonsdale has obtained
a satisfactory set of relative intensities for the
zone [010] from which a picture is obtained of
the projection on the (010) face. No original data
have been obtained for either of these crystals,
The present paper merely involves a rediscussion
of the published data, making use of the ney
method of analysis.

Potassiyn

(a) Potassium dihydrogen phosphate

This substance crystallizes in the space group
V#2(142d). The unit cell, whose dimensions are
a=b=7.43A; ¢=6.97A, contains four molecules
KH,PO,. The positions of the potassium and
phosphorus atoms are fixed by symmetry con-
ditions. Qualitative consideration of the com-
plexity of the spectra indicates that the sixteen
oxygen atoms occupy the sixteen-fold general
position® requiring three parameters for its
specification. We shall confine ourselves here to
the application of the new method to the
determination of the x and y parameters of the
oxygen atoms.

We compute® the series

33 F2(hk0)e2rithulatiofe)

making use of the observed absolute F values
published by West. The result of this comP“l""'
tion is shown in the form of a contour map in
Fig. 2(b). From the positions of the eight peaks
surrounding the origin and our knowledge of the
space group, we can immediately determine -the
oxygen parameters in this plane. The maximd

*J. West, Zeits. f. Krist. 74, 306 (1930).
* K. Lonsdale, Proc. Roy. Soc. A133, 536 (193 },).Re:uﬂf
®R. W. G. Wyckoff, Analyti{:l b;]agpresswri&fnl e
of the Theory of Space Groups, Was ington, 1 55
® The method of Beevers and Lipson (Phil. Mag. 17,8
(1934)) is very convenient,
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Fic. 2. Potassium dihydrogen phosphate. (a) Electron density projected on (001), J. West.? () Contour map of the
F2(hk0) series.

occur for the values” 6,=29.6° and 6,=51.4.°
These are to be compared with the values
obtained by West, i.e., 8;=29°, 6,=52°,

(b) Hexachlorobenzene

The space group in this case is Ca*(P2:/c).
There are two molecules CgClg in a cell of
dimensions a=8.07A, b=3.84A, ¢=16.61A, 8
=116°25". All the atoms are in twofold general
positions,® the molecules having central sym-
metry.

In this case we compute the series

"01=3060u/a, etc.

Zzp?(h()l)e’lwi(h u/aer(r),

using the relative F values observed by Lonsdale.
The contour map (Fig. 3) shows the result of this
computation. If we assume that peaks of the type
A, B and C are due mainly to CI-Cl distances and
make use of the space group data we are led
without further assumptions to a slightly ir-
regular hexagon of chlorines arranged with
respect to the axes as shown in Fig. 4. To explain
other principal peaks we are led to an inner
hexagon of carbons. The components of the
various interatomic distances are given in Table

F2hot)

Fic. 3. Hexachlorobenzene. Contour map of the F*(h0l) series.
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